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INTRODUCTION

Lake Powell began forming when the diversion tunnels around Glen Canyon Dam
were closed in 1963. When Lake Powell filled in June of 1980, it became the
largest reservoir in the Colorado River system, with a storage capacity of
over 27 million acre-feet (33.3 billion m Lake Powell is located on the
Colorado River in arid northern Arizona and southeast Utah (figure 1). The
Colorado and San Juan Rivers contribute over 95 percent of the lake's annual
inflow (Stockton and Jacoby, 1976). For the most part, the flow of these
rivers comes from snowmelt in the Rocky Mountains of Colorado, Wyoming, Utah,
and New Mexico. Runoff peaks in May and June, and is at its minimum in
January (ReMillard et al., 1992). The lake was created primarily to guarantee
legally mandated river flows from the Upper Colorado River Basin states of
Utah, Wyoming, Colorado, and New Mexico, to the Lower Colorado River states of
Arizona, Nevada, and California in times of drought. 1In addition, Lake Powell
serves as a popular recreation area, recording almost 2.5 million visitor days
each year (Potter and Drake, 1989). The turbines in Glen Canyon Dam produce
approximately 4 billion kilowatt hours of hydropower each year (U.S. Bureau of
Reclamation, 1990).
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Figure 1. Lake Powell is located along the Colorado River in northeast
Arizona and southeast Utah.
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As part of an ongoing program to monitor the effects of Glen Canyon Dam and
Lake Powell on the Grand Canyon downstream, water quality in Lake Powell is
routinely monitored by Reclamation's Glen Canyon Environmental Studies office
in Flagstaff, Arizona. Current monitoring is based solely on point sample
data. Extrapolating these data to unsampled parts of the lake is uncertain
and totally dependent on analyst knowledge of the reservoir. Numerous
researchers have developed models that predict water quality parameters from
Landsat MSS (Multispectral Scanner) and TM (Thematic Mapper) image grey values
(Verdin and Wegner, 1983; Lathrop and Lillesand, 1986, 1987; Lira et al.,
1992). These models are applied to the entire water body, generating maps of
water quality parameters from a limited set of point sample data. These
models are affected by a multitude of environmental factors; and increased
limnological complexity frequently reduces prediction accuracy. This project
was funded to determine if Landsat TM imagery could be used to reliably
extrapolate point-sampled water quality data on limnologically complex Lake
Powell.

. This paper describes how a multispectral Landsat TM image acquired on October

14, 1992 was used to successfully map chlorophyll-a concentration, Secchi
depth, and surface water temperature on Lake Powell. The methods described
here are useful for mapping water quality in other large reservoirs and lakes.
The resulting maps give a 2-dimensional view of water quality parameters that
is not available from any other source. These maps offer new perspectives to
limnologists studying the physical and biological dynamics of Lake Powell.

COLLECTING AND PREPARING FIELD AND IMAGE DATA

on 10/14/92, five sampling teams measured water quality parameters at 110
sites on Lake Powell. The location of each sampling site was determined using
GPS receivers. The Landsat TM image acquired the same day was preprocessed to
reduce systematic and random noise, and a coordinate transformation equation
was calculated to relate geographic coordinates to image row/column
coordinates. Finally, image grey values were extracted from the image at the
calculated sampling site coordinates and merged with the sampled water quality
measurements. The models which predict water quality from image grey values
were derived from this data set.

Collecting Water Quality Samples

Lake Sampling

Five teams sampled Lake Powell on October 14, 1992, the day of the Landsat 5
overpass. The five teams collected samples at a total of 110 stations
distributed throughout Lake Powell (figure 2). At each station, sampling
crews measured surface water temperature, conductivity, dissolved oxygen, and
Secchi depth. 1In addition, crews collected surface and composite 0-5 meter
water samples from which chlorophyll-a concentrations were derived. The
surface samples were collected by hand in a one-liter bottle. The composite
samples were collected by:
1) slowly lowering a weighted 5-cm diameter swimming pool hose to a depth
of 5 meters,
2) plugging the end of the hose in the boat with a rubber stopper, thereby
trapping the column of water in the hose,
3) raising the hose into the boat using a rope attached to the weighted end
of the hose,
4) removing the rubber stopper and transferring the water from the hose
into a bucket, and
5) drawing a one-liter sample from the bucket.
These samples were stored on ice in the dark until they could be processed
using standardized methods to determine chlorophyll-a concentration



‘ (Strickland and Parsons, 1968).

Sampling crews noted the starting and ending times of sampling, as well as
environmental observations such as cloud cover percentage and type, wind speed
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. Figure 2. Locations at which samples were collected on October 14, 1992.



and direction, and wave height. Miscellaneous notes were also recorded that
were useful when the sampled data were analyzed with the image data, e.gq.
*"river is plunging here", or "woody debris on the surface of the water”.

Determining Locations of Sampling Boats

GPS (Global Positioning System) receivers recorded the geographic coordinates
of the sampling boats at each sampling site. GPS receivers use precise
signals from a constellation of DoD (Department of Defense) navigation
satellites to determine geographic position anywhere in the world. Signals
from four satellites are required for a 3-dimensional fix (latitude,
longitude, and elevation), while signals from three satellites are adequate to
determine latitude and longitude, if elevation is known. GPS receivers were
used because they compute accurate position fixes in real time, at all times
of day, and under all weather conditions.

C/A (coarse acquisition) code GPS receivers were used for this study. These
receivers calculate a new position about once per second. Coordinates for
each sampling site were stored as a separate file in an electronic data
logger. Under optimum conditions, the positional accuracy of fixes from C/A
code GPS receivers is typically 20 to 30 meters. However, during the sampling
of Lake Powell, DoD was operating the constellation of GPS satellites under
S/A (Selective Availability). S/A is the intentional degrading of GPS signals
to limit their usefulness to a potential military adversary. The magnitude of
S/A positional error varies with time, but it can be 100 meters or more.
Fortunately, the errors introduced with S/A, as well as others introduced by
atmospheric delays of the GPS signals, can be drastically reduced by post-
processing using data from a GPS base station. A base station is another GPS
unit which collects data at a known location simultaneous to the "roving" GPS
units. Post-processed individual GPS positions typically have accuracies of 5
to 10 meters. For this work, a base station was operated at the National Park
Service warehouse at Wahweap Marina during lake sampling.

Errors in GPS position measurements tend to be normally distributed, so
averaging multiple GPS positions increases accuracy (Langley, 1991).

Averaging 180 or so GPS positions typically reduces error from 5 to 10 meters
to 1 to 3 meters. For this reason, the sampling teams collected a minimum of
180 points (or the maximum number the available memory in their GPS unit would
allow) at each sampling site. 1In many cases, the GPS units were simply turned
on when the sampling site was reached, and turned off just before leaving for
the next sampling site.

Differential correction was performed on all but 6 of the 110 rover GPS files.
The six that could not be differentially corrected were collected when the
base station was not in operation. Because all six of the uncorrected GPS
positions fell in homogeneous regions of the lake, any S/A-induced position
error was deemed to be insignificant. Moving the estimated sample location
100 meters in any direction did not appreciably alter the image grey values in
any band.

Differentially corrected GPS positions for each sampling site were plotted in
2-D (two dimensions) and inspected to see if the GPS data were tightly
grouped, or if the distribution appeared to be fragmented with groups of
outliers separate from the main data distribution. Outliers were present at
23 sites. The outliers at all 23 sites had been calculated in 2-D mode (using
three satellites instead of four to calculate a position). Large errors for
positions calculated in 2-D mode are the result of the GPS unit using its last
autonomously-computed elevation estimate and signals from only three
satellites to calculate latitude and longitude. Due to the geometric
configuration of the GPS satellite constellation, the elevation component of a
GPS position contains at least 1.5 times as much error as the horizontal



component, which itself can be over 100 meters in the presence of S/A. When
such an error-prone estimate is used in the calculation of horizontal
position, horizontal accuracy suffers. 2-D positions acquired on 10/14/92
were improved by manually resetting the elevation of each point to its actual
value, and recalculating the position. Any adjusted 2-D positions that were
still major outliers were removed from their data set.

The edited GPS data sets were then averaged to yield the best estimates of
sampling boat positions. Unfortunately, boat drift was severe (over 100
meters) for about 30-percent of all sampling sites. Because sampling teams
did not record the exact times at which they sampled, the sample positions
could be in error by up to half of the drift distance. This positional error
usually did not cause any problems due to the spatial homogeneity of much of
the lake. However, in areas of high spatial variability, the locational
uncertainty led to dropping several samples from consideration when developing
water quality prediction models.

Preparing the Image Data
Thematic Mapper Imagery

The TM sensor is carried aboard the Landsat 4 and Landsat 5 satellites (figure
3). These satellites orbit the earth at an altitude of 705 km, and have an
orbital revisit cycle of 16 days. TM produces imagery in a 185 km-wide swath
in seven different wavelength bands. TM1 (IM band 1) through TM4 are in the
visible and near IR (infrared) part of the spectrum, TM5 and TM7 are in the
middle IR region, and TM6 is in the thermal IR region (table 1). Ground-
projected pixel size is 30 meters for TM1-TM5 and TM7, and 120 meters for TM6;
but the standard geometrically corrected TM image product has all bands
resampled to a 28.5 meter pixel size. All bands are quantized to 8-bits (256
possible grey levels).

Image Preprocessing

The TM sensor was designed for terrestrial applications. Because water bodies
are among the darkest objects in any TM scene, image brightness variations
within water bodies typically occupy only a small fraction of the total
dynamic range available to the TM sensor. The low reflectance of water bodies
makes them more susceptible to degradation by the systematic and random noise
found in all TM images. For this reason, extra care was taken to reduce TM
image noise prior to analysis.

The image preprocessing procedures used to prepare the TM data for analysis
are described below. These procedures were time-consuming and computationally
intensive, but they were necessary to increase the utility of TM data for

water quality mapping.

Excluding Land Area from Processing

The first preprocessing step was to create an image mask that distinguishes
water pixels from land pixels. A threshold TM4 grey value was selected which
identified all but the most turbid water. For the 10/14/92 Lake Powell scene,
pixels with a TM4 grey value of 18 or less were identified as water and
assigned a value of 255. The rest of the pixels were identified as land and
received a value of zero. This was only a preliminary land/water mask because
all land pixels in shadow were identified as "water", and pixels containing
extremely turbid water, large boats, and large airplanes were identified as
"land". The image analyst visually identified the areas containing these
kinds of errors, and used image processing procedures to correct the image
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Figure 3. The Landsat Thematic Mapper Sensor. A scanning mirror and optics
direct light from the earth onto an array of sensitive light detectors. Here,
light intensity in several different wavelength bands is measured and
quantized for each 30- by 30-meter area (for TM1-5 and TM7) or 120- by 120-
meter area (for TM6) on the earth's surface. These digitized brightness
values are then transmitted to earth, where they are reconstructed into
digital images.

TM Band Spectral Range Description
(micrometers)
1 0.45 - 0.52 blue
2 0.52 - 0.60 green
3 0.63 - 0.69 red
4 0.76 - 0.90 near infrared
5 1.55 - 1.75 middle infrared
7 2.08 - 2.35 middle infrared
6 10.40 - 12.50 thermal infrared

Table 1. Landsat Thematic Mapper Spectral Bands.

mask grey values in the identified areas.

To minimize manual editing, the TM4 water identification threshold was set to
a value that is considerably higher than that of the average pure water pixel.



As a result, numerous pixels along the edge of the lake were identified as
"water", when in fact they are slightly contaminated with reflectance from the
adjacent land. To exclude these pixels from the land/water mask, a 3x3
minimum filter was passed over the edited preliminary water mask to move the
land/water boundary inward one pixel in all directions. This mask is referred
to as the LAKEONLY mask.

The 120-meter pixel size of TM6 prior to resampling to 28.5 meters means that
the effects of land brightness can be observed up to 120-meters from shore.
For this reason, a 5x5 minimum filter was passed over the LAKEONLY mask to
move the land/water boundary inward an additional two pixels. This mask is
referred to as the LAKEONLY6 mask.

Each of the seven TM bands was masked such that only lake pixels remained in a
zero background. This masking was accomplished by performing a bitwise
logical AND operation with the LAKEONLY and LAKEONLY6 image masks and the raw
TM data.

Replacing Pixels Containing Non-water Reflectance

Some pixels identified as water contained some non-water reflectance
contamination from boats, boat wakes, airplanes, vapor trails, etc. The image
analyst manually identified these pixels within polygons, deleted the image
data within those polygons, and then filled the polygons with the average
value of their neighboring "water" pixels.

Reducing Image Banding

‘ All TM images contain a systematic horizontal banding noise pattern. This
pattern is additive in nature and is present throughout images, but is most
noticeable in areas of low reflectance (Helder et al., 1992). OQuick
transitions from extremely bright to low reflectance targets can produce
temporary banding due to detector saturation and sensitivity loss, but the
most common banding pattern visible in all TM images is caused by differences
in sensor calibration offsets between forward and reverse scans. Each scan
images 16 rows of pixels, so the banding pattern within raw TM images has a
period of 32 rows. This effect is not correlated with the image and may
produce scan differences of up to four grey values (Barker, 1985).

A technique developed by Crippen (1989) was used to remove scan line noise
from TM images. The general concept is to subtract scan line noise after it
has been isolated by a combination of spatial filters. Crippen's process is
outlined below.

1) Apply a Sl-column by l-row low-pass (mean) filter to the image.

This low-pass filtering removes high spatial frequency information
along the image rows, leaving an image with even more easily
identifiable banding patterns.

2) Apply a 33-row by l-column high-pass filter (central pixel value minus
filter-window mean) to the output from step 1.

This column-~oriented high-pass filter identifies the banding

pattern between scan swaths. A 33-row instead of a 32-row high

pass filter is used here because of the difference in pixel size

between the standard geometrically corrected TM image product and
' the raw imagery (28.5 meters compared to 30 meters).

3) Apply a 21-column by l-row low-pass (mean) filter to the output from



step 2.

This filter suppresses artifacts created by the high-pass filter
in step 2, and creates the "banding estimate" image.

4) Subtract the banding estimate image produced in steps 1, 2, and 3 from
the original image to create the debanded image.

Crippen's technique is suitable for improving the visual interpretability of
most TM images, but is unsuitable if the imagery is to be used for
quantitative analyses of water bodies. The main reason for this unsuitability
is that near-shore lake pixels can acquire false patterns that are the inverse
of high-contrast patters located nearby on the same image row. For example, a
high contrast shoreline in a "U" shape will cause the technique to produce
anomalous grey values for near-shore pixels near the base of the "U" as
extreme differences between adjacent low-pass filtered rows (step 1) generate
anomalously high banding estimates (step 2), which, when subtracted from the
raw data, produce extreme grey values (step 4).

To make Crippen's technique usable for limnological applications, debanding
estimates were calculated from "water" pixels only. Furthermore, all water
pixels that are significantly brighter than their neighbors were removed prior
to calculating debanding correction factors. A modified version of the
LAKEONLY6 image mask was used to exclude high contrast targets in each TM
band. The LAKEONLY6 mask not only excludes all land pixels, but it also
excludes the 3 lake pixels closest to shore. These near-shore pixels
sometimes exhibit enough contrast with nearby lake pixels to cause artifacting
in the debanding process. The LAKEONLY6 mask was modified to exclude high
contrast areas where extremely turbid water abruptly transitioned to clear
water. What is "extremely turbid", however, varies with wavelength. TM1-4
are much more sensitive to turbidity in water than TM5 and 7; while TM6 is
completely unaffected by turbidity. For this reason, TM6 used the unmodified
LAKEONLY6 mask, while different modifications were performed on the LAKEONLY6
mask for use with TM1-4, and TM5 and TM7.

The above modification to Crippen's debanding technique removed the
artifacting problems associated with high-contrast targets. However,
excluding land and near-shore pixels dramatically reduced the number of pixels
available to define banding patterns. Pixels that did not have 16 "water"
pixels above and below them could not be corrected. The number of pixels
affected by this limitation was quite large because of the sinuous, narrow
shape of Lake Powell.

To increase the number of pixels for which debanding estimates were available,
banding estimate values (from step 3) were extended 150 pixels along each row
to generate a final banding estimate image. This extension was accomplished
through a series of l-row by multiple-column low-pass (mean) filters which
replaced zero background values with averages of the banding estimate pixel
values within the filter kernel. Extending banding estimates allowed most
pixels whose position in the image prohibited a direct calculation of the
estimate to use the average of estimates calculated for neighboring pixels
along the same line. Although this technique increased the number of pixels
that could be corrected, a small percentage of pixels could not be corrected
by virtue of their position in the image.

The final banding estimate image for TM1-5 and TM7 was subtracted from the raw
LAKEONLY images so that most lake pixels, even those within 3 pixels of shore
and those within extremely turbid areas excluded earlier, were debanded. The
TM6 debanding estimate image was subtracted from the raw LAKEONLY6 image. All
images created during the debanding process were stored in real (4 bytes per
pixel) format, instead of being converted back to byte format. Converting



back to byte can sometimes accentuate any residual banding pattern.

The debanding procedure produced an image whose appearance and utility for
quantitative modelling was vastly improved. Furthermore, it did not alter the
mean value of any band. The effectiveness of the debanding procedure is
illustrated in figure 4.

Reducing Random Image Noise

All TM images contain high frequency "salt and pepper" random noise that is
not removed by the debanding procedure. This noise is not correlated with the
image data, and exhibits no spatial pattern. Salt and pepper noise was
reduced by applying a moving average (mean) filter to the image. Mean
filters have the beneficial effect of increasing the signal-to-noise ratio by
a factor of the square root of the number of pixels in the filter (Lindell et
al., 1986). On the other hand, mean filters reduce the effective spatial
resolution of the data, possibly obscuring some detailed patterns that might
be visible in the unfiltered data. Four kernel sizes were evaluated for use
with the debanded reflective bands (TM1-5 and TM7) of the 10/14/92 Lake Powell
TM scene: 3x3, 5x5, 7x7, and 11x11l. Images filtered with the 5x5 kernel
exhibited the best correlation with chlorophyll-a concentration and Secchi
depth, and retained most of the detailed patterns visible in the original
image.

For TM6, the thermal band, a 13-row by 13-column mean filter was used to
reduce image noise. The 13x13 kernel operating on 28.5-meter TM6 pixels
mimics a 3x3 kernel operating on the 120-meter pixels of the raw data. This
kernel size effectively reduced image noise without excessively smoothing the
data.

Preparing the Water Quality/TM Data Set

Transforming Coordinates

The first step in this process was to identify GCPs (ground control points) on
both the TM image and georeferenced map products (maps or orthophoto
quadrangles). GCPs are features that are clearly identifiable on both the
image and map products, and are used to define the relationship between two
coordinate systems. An analyst marked GCPs with pin holes on the map
products, and then recorded the image coordinates of the same features to
subpixel accuracy.

The differentially corrected GPS coordinates for each sampling site were
converted from WGS84 latitude/longitude to NAD27 UTM (Universal Transverse
Mercator) northings and eastings. These UTM coordinates were converted to
image coordinates using a transformation equation developed from the paired
GCP coordinates. The Arc/Info geographic information system was used to
perform the coordinate transformation. GCP locations were digitized from
orthophoto quadrangles as tics into an ARC coverage in UTM coordinates. The
GPS-derived UTM coordinates of the sampling sites were also entered into this
coverage as point features using the GENERATE command. The image coordinates
of the GCPs were entered as tics into a second coverage using GENERATE. The
TRANSFORM command then converted the UTM sampling site coordinates from the
first coverage to image coordinates, and stored these transformed coordinates
in the second coverage. This conversion was defined by a first-order
transformation equation relating the GCP (tic) coordinates from the two
coverages. ‘
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Figure 4b.

Figure 4. Raw (figure 4a) and debanded (figure 4b) TM band 3 image of Padre
Bay on Lake Powell. The debanding procedure effectively removes image banding
without altering the mean image grey value.
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Extracting Image Data

Image grey values were extracted at the image coordinates calculated by the
transformation equation. The ARC UNGENERATE command generated an ascii file
of sampling site image coordinates from the transformed Arc coverage. Image
grey values were extracted at the image coordinates contained in this file,
and stored in an ascii file. This file of image grey values was merged with
the water quality data file to form the data set on which analysis was
performed.

DATA ANALYSIS:
DEVELOPING WATER QUALITY PREDICTION MODELS
AND PRODUCING WATER QUALITY MAPS

The water quality/TM data set was studied to determine which samples should be
excluded from model development, and how to stratify the lake into regions
which exhibited consistent relationships between image grey values and
chlorophyll-a and Secchi depth values. Multiple regression analysis was then
employed to generate chlorophyll-a and Secchi depth prediction models for each
of the lake strata. A modified lookup table approach was used to define a
single surface temperature prediction model for the entire lake. The models
were applied to the TM imagery, producing maps of chlorophyll-a concentration,
Secchi depth, and surface temperature. These maps were finalized by color
coding, and placing them on a black-and-white image background for geographic
reference.

Editing and Stratifying the Water Quality/TM Data Set

. The water quality/TM data set was used to define the models which predict
water quality parameters from the TM image. Plots of chlorophyll-a
concentration and Secchi depth versus the six reflective TM bands were crucial
in the development of these models. They helped the analyst determine if
certain samples should be excluded from model development, and how the image
could be stratified into similar regions to increase model prediction
accuracy. When interpreting these plots, the analyst considered the factors
that affect water reflectance, the reliability of the sample values, and the
limitations of the TM spectral bands for water quality mapping.

Factors Considered When Editing and Stratifying the Water Quality/TM Data Set
Factors Affecting Water Reflectance

The reflectance signal of a lake or reservoir is affected by numerous factors,
including those which influence the water's volume reflectance, and those
which influence reflectance from the air/water interface. These factors
include:
e algal species composition
Different species of algae have different relationships between
spectral reflectance and chlorophyll-a concentration due to:
- differences in the relative amounts of other pigments like
phycocyanin, chlorophyll-b, and chlorophyll-c
- differences in the absolute amount of chlorophyll-a per cell
- differences in the size of the cells (Stumpf and Tyler,
1988)
e location of algae in the water column
The spectral reflectance curve of a given concentration of a given
species of algae will change as the algae is moved from shallow to
deeper depth (Quibell, 1992). The vertical profile of algae
concentration can vary across a lake. For example, variable winds
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might result in surface mats of bluegreen algae in calm areas, and
cause the mixing of the bluegreens in the water column in windy,
wavy areas. : .

e concentration of DOC (dissolved organic carbon)
pOC has a reflectance curve in the visible and near IR that is
very similar to that of chlorophyll-a. Its presence in a lake,
especially if it is not distributed homogeneously, can confound
chlorophyll-a mapping efforts (Stumpf and Tyler, 1988; Dierberg,
1992).

e mineral sediment concentration
Higher concentrations of mineral sediments increase the volume
reflectance of water, and interfere with the prediction of
chlorophyll concentration (Ritchie et al., 1990; Lathrop et al.,
1991).

e sediment color
The wavelength band best for mapping turbidity cause by green
algae may not be the best for mapping turbidity caused by
suspended red clays.

¢ sediment particle size
Larger suspended sediments produce higher reflectance than smaller
suspended particles at the same concentration (Wen-yao and Klemas,
1988).

e zooplankton concentration
Increasing zooplankton concentration increases the volume
reflectance of water.

e zooplankton distribution within the water column
As with algae, the spectral reflectance of a given concentration
of zooplankton will change as the zooplankton move from shallow to
deeper depths. Zooplankton will move up and down in the water
column to escape predation by fish.

e presence/concentration of flotsam
Flotsam alters reflectance while not affecting water quality per
se.

e sun glint .
Lower solar zenith angles and increased water surface roughness
both increase the probability of sun glint.

Information about all of these factors was not available for Lake Powell on
10/14/92. However, some basic knowledge of the lake allowed the analyst to
make educated guesses about some of those factors. This knowledge included 1)
the flow regimes of tributaries, 2) typical sediment types and concentrations
from tributaries, 3) relative temperatures of tributaries and lake water, 4)
location of likely nutrient sources that might spur algal growth, 5) sun
angle, and 6) wave height.

Factors Affecting Sample Values

The measurements of chlorophyll-a concentration, Secchi depth, and surface
temperature were made at single points in space and time on a spatially and
temporally variable system. The many successful applications of remotely
sensed data to water quality analysis indicate that such point samples can
indeed be related to image data. Nevertheless, when developing the water
quality prediction models, the analyst considered the following factors:
e accuracy and precision of the reported sample values
- differences in sample measurement techniques between and within
sampling teams ' '
- differences in sample processing techniques between and within
sampling teams
+ degree of subjectivity in the field measurements
- environmental conditions that could affect field measurements
e scale differences between area of water sampled in the field and the
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projected area of a TM pixel
e temporal variability of the sampled parameter and the time between
sampling and the satellite overpass
¢ spatial variability of the sampled parameter and reliability of the
sampling positions
+ accuracy of position measurements
+ boat drift

Factors Affecting the Utility of the TM Sensor

Image brightness variations within water bodies typically occupy only a small
fraction of the total dynamic range available to the TM sensor. This
relatively coarse radiometric resolution limits the capacity of TM data to
detect small concentrations of material suspended within the water column.

Another limitation of TM imagery is its spectral resolution. Although the
broad-band radiance measurements of TM imagery are quite adequate for mapping
water quality parameters such as turbidity and secchi depth that are directly
related to water brightness, TM bands are not optimally designed for
distinguishing chlorophyll-a concentration. Chlorophyll-a reflectance and
absorption in the visible and near IR is highly selective, and within the
broad range of TM spectral bands, spectral absorption and reflectance features
tend to counteract, resulting in a flattening of the reflectance spectrum
(Dekker et al., 1992). The broad range of the TM spectral bands also hinder
separating chlorophyll-a reflectance from that of other constituents in the
water column (Khorram, 1985).

‘ Editing the Water Quality/TM Data Set

As a result of careful review of the above factors for each sample point, not
all of the data collected on 10/14/92 was used to define water quality
prediction models. Samples were excluded from consideration durlng the
development of the chlorophyll—a prediction model if:
e they were collected in a heterogeneous region of the lake where a slight
positional error could cause a significant change in image grey value
e they were collected in extremely turbid areas within the Colorado or San
Juan Rivers ;
The extremely high reflectance from the rivers was exclusively due
to a high concentration of suspended mineral sediment, whereas the
lake reflectance came primarily from a mixture of algae and
mineral sediment. Grey values from the rivers and the lake were
significantly different, and could not be used together during
regression model development.
e their chlorophyll-a values were less than 1 ug/l
The TM data could not reliably estimate chlorophyll-a
concentrations of less than 1 ug/l. 1Including those samples in
the data set introduced a large amount of variability. The
regression model was then forced to minimize error in the noisy,
and more numerous low chlorophyll-a values at the expense of the
better behaved, but less numerous higher chlorophyll-a values.
Even though the samples with chlorophyll-a values of less than 1
ug/1l were excluded from regression model development, the maximum
prediction error for any of the excluded points was only 1 ug/l.

Secchi depth measurements were excluded from consideration during model

development if they were made:
e in a heterogeneous region of the lake where a slight positional error

could cause a significant change in image grey value
e at extremely turbid areas within the Colorado or San Juan Rivers. These

rivers were much more turbid than the lake
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Secchi measurements taken in the rivers did not follow the trend
established by the lake measurements.

e more that 3.5 hours before or after solar noon
This limitation reduced Secchi depth measurement variation due to
sun angle differences while still leaving a large data set for
regression analysis. (Data supporting the correlation between
secchi depth and solar zenith angle is given in Appendix A).

Stratifying the Lake

Study of the data also revealed that developing separate prediction models for
" three different regions of the lake improved model results. These strata
were: 1) the Colorado River inflow area, 2) the San Juan River inflow area,
and 3) the main body of the lake (figure 5). Relationships between
chlorophyll-a and Secchi depth values and image grey values were generally
good within strata, but not across strata. The need for this stratification
probably relates to differences in suspended sediment concentration and
composition from the Colorado and San Juan Rivers, and the comparative lack of
suspended mineral sediments in the other parts of the lake.

Mapping Chlorophyll-a Concentration and Secchi Depth
Regression Analysis Guidelines

Multiple regression analyses were performed on the edited and stratified water
quality/TM data sets to generate models which predict chlorophyll-a
concentration and Secchi depth from de-banded and averaged image data. Within
each stratum, all possible regressions were performed with the six reflective
TM bands as independent variables and the chlorophyll-a and Secchi values
(including square roots and natural logs) as the dependent variables. The
square root and natural log transformations were applied to the chlorophyll-a
and Secchi data because they sometimes help to linearize the relationship
between the TM and the water quality data. A listing of model independent
variables and their associated r? values showed which regression models were
worthy of further investigation. From this list, the most promising
regression models were calculated with more complete regression output.

R-squared values alone were not used to determine the final model selected.
Increasing the number of independent variables in almost any regression model
will increase the r? value. However, the more independent variables one adds
to a given model, the greater the chances that the model is data set dependent
and does not represent the true relationship within the population. For this
reason, only those independent variables which were significant at the 0.95
probability level were included in the regression models. :

Mapping Chlorophyll-a Concentration

Chlorophyll-a content, as in indicator of algal standing stock, is an
important indicator of lake biological productivity and water quality. Two
chlorophyll-a measurements were available for each sample site: the surface
and 0-5 meter composite. These two different measurements were highly
correlated (r?> = 0.9706), with a maximum difference of 1.90 ug/l. Separate
regression analyses were performed using each of these two measurements as the
dependent variable. Because the 0-5 meter composite chlorophyll-a values
produced slightly higher r? values than the surface chlorophyll-a values, the
0-5 meter composite values were mapped.
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Figure 5. Regression model strata developed for the 10/14/92 Lake Powell TM

‘ scene.
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The 10/14/92 Lake Powell Chlorophyll-a Concentration Map

Stratifying the lake into three separate regions dramatically improved
regression model results. The best chlorophyll-a regression model derived
from the non-stratified data had 1ln chlorophyll-a as its dependent variable.
Even when all six reflective TM bands were used as predictors, an r? value of
only 0.6144 was achieved. Regression models developed from the Colorado River
inflow, San Juan River inflow, and main body strata were vast improvements
with r? values of 0.9008, 0.9401, and 0.9241, respectively (figures 6, 7, and
8). These models were accurate within lake strata, but not across strata.

Each regression model was applied to all pixels falling within its stratum.
No anomalous patterns were observed for the San Juan or main body strata, but
the Colorado River inflow regression model predicted anomalously high
chlorophyll values for those pixels falling within the Colorado River plume.
The plume is a transition zone between the free-flowing Colorado River in
Cataract Canyon and the calm waters of Lake Powell. The plume has a current
which keeps extremely high sediment concentrations in suspension. The high
reflectance from these suspended sediments caused the overestimation by the
chlorophyll regression model. On 10/14/92, the plume extended only a short
distance to near the confluence of the Dirty Devil River before it plunged
below the surface waters of Lake Powell.

The overestimation problem was solved by simply masking out the relatively

small area of the Colorado River plume, and assigning the chlorophyll values

within this area an arbitrary value of 1 ug/l. Waters with extremely high

suspended sediment concentrations always have low chlorophyll concentrations

because the sediments reflect and absorb incoming sunlight before it can be
’ used for photosynthesis by algae (Verdin and Wegner, 1983).

The modified Colorado River inflow chlorophyll-a concentration map was
mosaicked with the San Juan and main body maps to form the final 0-5 m

Dependent Variable: CHLA

Analysié of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F
Model 2 30.75394 15.37697 48.758 0.0001
Error 17 5.36134 0.31537
C Total 19 36.11528

Root MSE 0.56158 R-square 0.8515

Dep Mean 3.67300 Adj R-sg 0.8341

c.Vv. 15.28946

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -11.898862 1.58261526 -7.518 ° 0.0001
TM35 1 1.250175 0.13873418 9.011 0.0001
TM75 1 ~1.677687 0.37238628 -4.505 0.0003
‘ Figure 6. Chlorophyll-a regression model for the Colorado River inflow
stratum.



Dependent Variable: CHLA

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 2 116.08117 58.04059 40.689 0.0001
Error 12 17.11722 1.42644
C Total 14 133.19839
Root MSE 1.19433 R-square 0.8715
Dep Mean 4.32348 Adj R-sq 0.8501
Cc.V. 27.62438
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T!
INTERCEP 1 -18.900104 3.84859189 -4.911 0.0004
TM25 1 2.251583 0.25719765 8.754 0.0001
TM45 1 -1.640225 0.49346017 -3.324 0.0061

Figure 7. Chlorophyll-a regression model for the San Juan River inflow
stratum.

'. Dependent Variable: CHLA

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 3 37.32559 12.44186 64.308 0.0001
Error 30 5.80418 0.19347
C Total 33 43.12977
Root MSE 0.43986 R-square 0.8654
Dep Mean 1.73443 Adj R-sq 0.8520
c.V. 25.36018
Parametér Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 8.741902 1.46101575 5.983 0.0001
TM15 1 -0.483464 0.06035993 -8.010 0.0001
TM25 1 0.850491 0.09323798 9.122 0.0001
TM75 1 0.350582 0.08823783 3.973 0.0004

Figure 8. Chlorophyll-a regression model for the main body stratum.

chlorophyll-a concentration image map (figure 9).

The image map shows that

the vast majority of Lake Powell is oligotrophic with chlorophyll-a

concentrations hovering around 1 ug/l.

concentration are located near the Colorado,

San Juan,

A few areas of elevated chlorophyll-a
and Escalante River
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Figure 9.
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Chlorophyll-a concentration image map for Lake Powell on 10/14/92.
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inflow areas, as well as the upper ends of some of the bays. Even in these
areas, the chlorophyll levels are still quite low (maximum of 12 ug/l).

Mapping Secchi Depth

Secchi depth is a common measurement of overall water clarity. It is made by
lowering a white disc 20 cm in diameter into the water on a calibrated line.
The depth at which the disc disappears is known as the Secchi disc
transparency, or Secchi depth.

Secchi depth measurements depend on several factors, including 1) the eyesight
of the viewer, 2) the contrast between the disc and the surrounding water, 3)
the reflectance of the disc, 4) the diameter of the disc (in extremely clear
waters only), 5) wave and sun angle conditions which determine the amount of
sun glint with which the viewer must contend, and 6) illumination intensity
(as determined by sun angle and cloud cover).

Ideally, Secchi depth should be measured from the shady side of the boat to
minimize sun glint in the eyes of the person taking the measurement. It
should also be measured between 10:00 am and 2:00 pm to minimize variation in
illumination intensity (Cole, 1979). However, illumination intensity also
varies with time of year. This variation can affect Secchi depth
measurements, especially in clear water (see Appendix A).

Secchi depth is well suited for mapping using TM imagery because the suspended
and dissolved organic and inorganic materials that affect Secchi depth also
affect reflectance in the TM visible and near-IR bands. The relationships
between TM grey values and Secchi depth can vary however, depending on
spectral reflectance of the constituents within the water column.

The 10/14/92 Lake Powell Secchi Depth Map

As with the chlorophyll-a data, stratification improved regression model
results, although not as significantly as with the chlorophyll-a data. The
best Secchi regression model derived from the non-stratified data had 1ln
Secchi depth as its independent variable. When all six reflective TM bands
were used as predictors, an r? value of 0.8855 was achieved. Regression
models developed from the Colorado River inflow, San Juan River inflow, and
main body strata used only one or two TM bands as predictors and improved the
r? values to 0.9008, 0.9401, and 0.9241, respectively (figures 10, 11, and
12). As with chlorophyll-a regression models, these models were accurate
within lake strata, but not across strata.

Each regression model was applied to all pixels falling within its stratum.
The strata were then mosaicked together to generate the predicted Secchi depth
image map (figure 13). This map shows high turbidity at the inflow of the
Colorado, San Juan, and Escalante Rivers, as well as elevated turbidity in
most of the larger embayments. The main channel of Lake Powell south of
Bullfrog Basin is relatively clear (Secchi depths of 9 meters or more), with
clearest water occurring in and around Padre Bay.

Transforming Image Data

Predictor variables other than debanded and averaged TM grey values have been
used to predict chlorophyll-a and Secchi depth using TM data. Two of the more
common transforms, principal components and band ratios, were investigated for
use with the 10/14/92 Lake Powell image. Neither of these transforms were
used to predict water quality parameters for the 10/14/92 Lake Powell TM
scene, but they are discussed in Appendix B because of their possible utility
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Dependent Variable: LNSECCHI

Source

Model
Error
C Total

Root MSE
Dep Mean
C.V.

Variable DF

INTERCEP 1
TM25 1
TM45 1

Analysis of Variance

Sum of Mean
DF Squares Square F Value Prob>F
2 4.24692 2.12346 90.838 0.0001
20 0.46753 0.02338
22 4.71445
0.15289 R-square 0.9008 -
1.01364 " Adj R-sq 0.8909
15.08354

Parameter Estimates

Parameter Standard T for HO:
Estimate Error Parameter=0
3.315543 0.65619426 5.053

-0.222717 0.01760154 -12.653
0.217374 0.08862348 2.453

Prob > |T|

0.0001
0.0001
0.0235

Figure 10. Secchi depth regression model for the Colorado River inflow

stratum.

Dependent Variable: LNSECCHI

Source

Model
Error
C Total

Root MSE

Dep Mean
C.V.

Variable DF

INTERCEP 1
TM25 1

Analysis of Variance

Sum of Mean
DF Squares Square F Value Prob>F
1 22.71038 22.71038 572.628 0.0001
47 1.86402 0.03966
48 24.57440
0.19915  R-square 0.9241
1.98473 Adj R-sq 0.9225
10.03400

Parameter Estimates
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